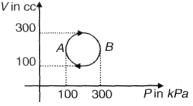


DPP – 1 (Thermodynamics)

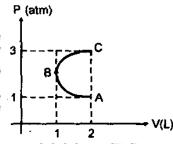
Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/60


Video Solution on YouTube:-

https://youtu.be/n1QeeLYqdqo

Written Solution on Website:-


https://physicsaholics.com/note/notesDetalis/78

Q 1. Calculate heat absorbed during process ABA given in figure?

- (a) 3.14 J
- (c) 31.4 J

- (b) 314 J
- (d) None of these
- In the P-V diagram shown in figure ABC is a semicircle. The work done in the Q 2. process ABC is:

- (a) zero
- $\frac{\pi}{2}$ atm-L

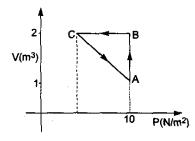
- (b) $\frac{\pi}{2}$ atm-L
- (d) 4 atm-L
- Pressure P. volume V and temperature T of a certain real gas are related by $P = \frac{\alpha T^2}{V}$. Q 3. Here, α is a constant. The work done by the real gas when temperature changes from T_0 to $2T_0$ while pressure remains constant is:
 - (a) $6\alpha T_0^3$

(b) $\frac{3}{2}\alpha T_0^2$ (d) $3\alpha T_0^2$

(c) $2\alpha T_0^2$

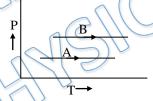
- n moles of an ideal gas undergo a process in which the temperature changes with Q4. volume as $T = KV^2$. The work done by the gas as the temperature changes from T_0 to 4T₀ is:-
 - (a) $3nRT_0$

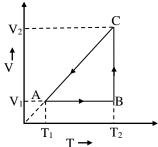
(b) $(5/2)nRT_0$


(c) $(3/2)nRT_0$

- (d) zero
- If pressure is 5 pascal at C and 10 pascal at B the work done by the gas in the process Q 5. $C \rightarrow A$ is:

Physicsaholics



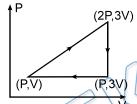

- (a) 7.5 J
- (c) 15 J

- (b) 10 J
- (d) 20 J
- Q 6. Find the amount of work done to increase the temperature of one mole of an ideal gas by 30°C, if it is expanding according to $V \propto T^{2/3}$.
 - (a) 167J
 - (c) 67]

- (b) 132J
- (d) None of the above
- Q 7. An ideal gas is taken from the state A (pressure P, volume V) to the state B (pressure P/2, volume 2V) along a straight line path on the P-V diagram select the statement (s) from the following
 - (a) the work done by the gas is the in the process A to B exceeds the work the taken from A to B along an isotherm.
 - (b) in the T-V diagram the path AB becomes part of a parabola.
 - (c) in the P-T diagram, the path AB becomes a part of a hyperbola
 - (d) in going from A to B, the temperature T of the gas first increases to a maximum value and then decreases.
- Q 8. Consider the two process on a system as shown in figure. The volumes in the initial state and in the final state are the same in the two process A and B. If W_1 and W_2 be the work done by the system in the processes A and B respectively then-

- (a) $W_1 > W_2$
- (b) $W_1 = W_2$
- (c) $W_1 < W_2$
- (d) Nothing can be said about the relation between W_1 and W_2
- Q 9. A cyclic process for 1 mole of an ideal gas is shown in figure in the V-T. diagram. The work done in AB, BC and CA respectively –

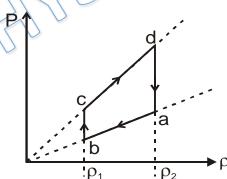
hysicsaholics

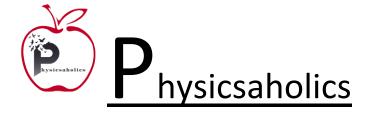


- (a) 0, $RT_2 \ln \left(\frac{V_1}{V_2} \right)$, $R(T_1 T_2)$
- (b) $R(T_1 T_2)$, 0, $RT_1 \ln \left(\frac{V_1}{V_2} \right)$
- (c) 0, $RT_2 \ln \left(\frac{V_2}{V_1} \right)$, $R(T_1 T_2)$
- (d) 0, $RT_2 \ln \left(\frac{V_2}{V_1}\right)$, $R(T_2 T_1)$
- Q 10. A gas is expanded to double its volume by two different processes. One is isobaric and the other is isothermal. Let W₁ and W₂ be the respective work done, then:
 - (a) $W_2 = W_1 In (2)$

(b) $W_2 = \frac{W_1}{In(2)}$

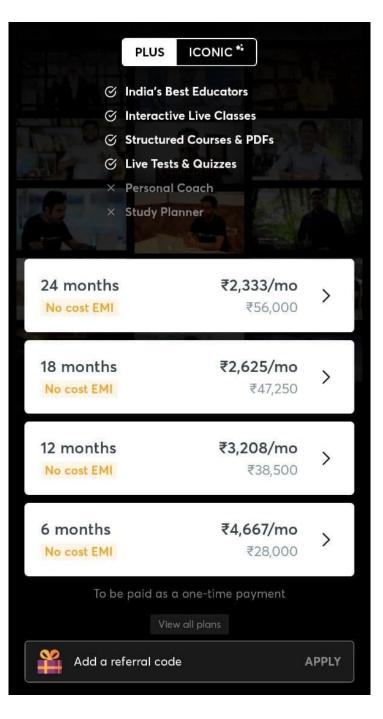
(c) $W_2 = \frac{W_1}{2}$

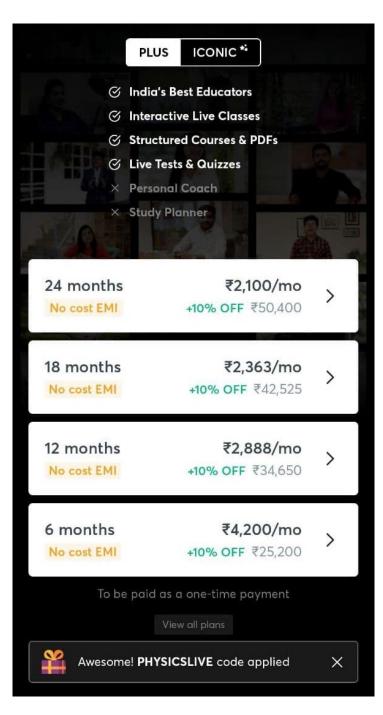

- (d) data is insufficient
- Q 11. An ideal gas is taken through cyclic process as shown in the figure. The net work done by the gas is:


- (a) zero
- (c) 2 PV

- (b) PV
- (d) 3 PV
- Q 12. One mole of an ideal gas at a temperature T_1 expands slowly according to the law $\frac{p}{V}$ constant. Its final temperature is T_2 . The work done by the gas is:
 - (a) $R(T_2 T_1)$

- (b) $2R (T_2 T_1)$ (d) $\frac{2R}{3} (T_2 T_1)$
- Q 13. An ideal gas undergoes a cyclic process abcda which is shown by pressure- density curve.


- (a) Work done by the gas in the process 'bc' is zero
- (b) Work done by the gas in the process 'cd' is negative
- (c) temperature of the gas at point 'a' is greater than at state 'c'
- (d) Net work done by the gas in the cycle is negative.


Answer Key

Q.1 c	Q.2 b	Q.3 d	Q.4 c	Q.5 a
Q.6 a	Q.7 a, b, d	Q.8 c	Q.9 c	Q.10 a
Q.11 b	Q.12 c	Q.13 a, b, d		

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

Written Solution

DPP- 1 Thermodynamics- Work Done by Gas in Different Processes
By Physicsaholics Team

DB = DU + Wgus In Cyclic process UU=0 100 0 × 100×10 blipsz) ANS (c)

$$W = \frac{\pi ab}{2}$$

$$= \pi \times \frac{1}{2} \times 1$$

$$= \pi atm - L$$
ANS(b)

$$P = \frac{\sqrt{T^2}}{V}$$

$$P = \frac{\sqrt{T^2}}{\sqrt{T^2}}$$

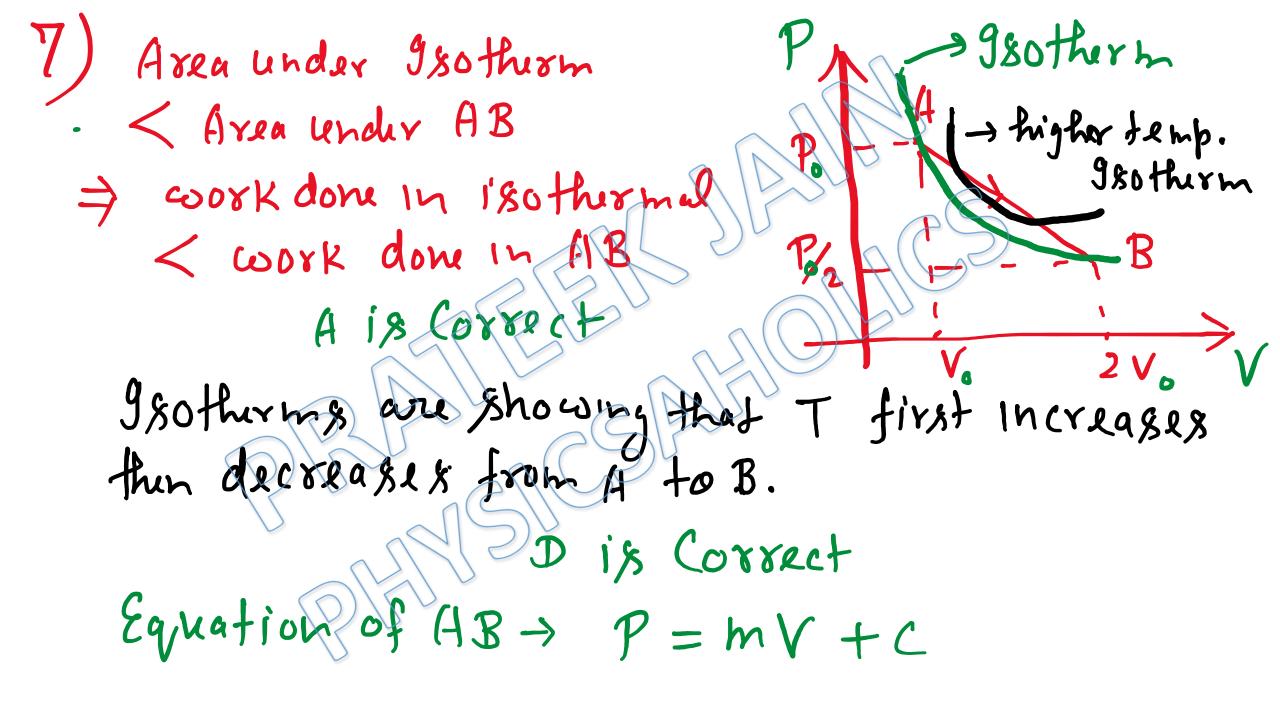
T=
$$KV^2 \Rightarrow \frac{PV}{NR} = KV^2 \Rightarrow P = NRKV$$

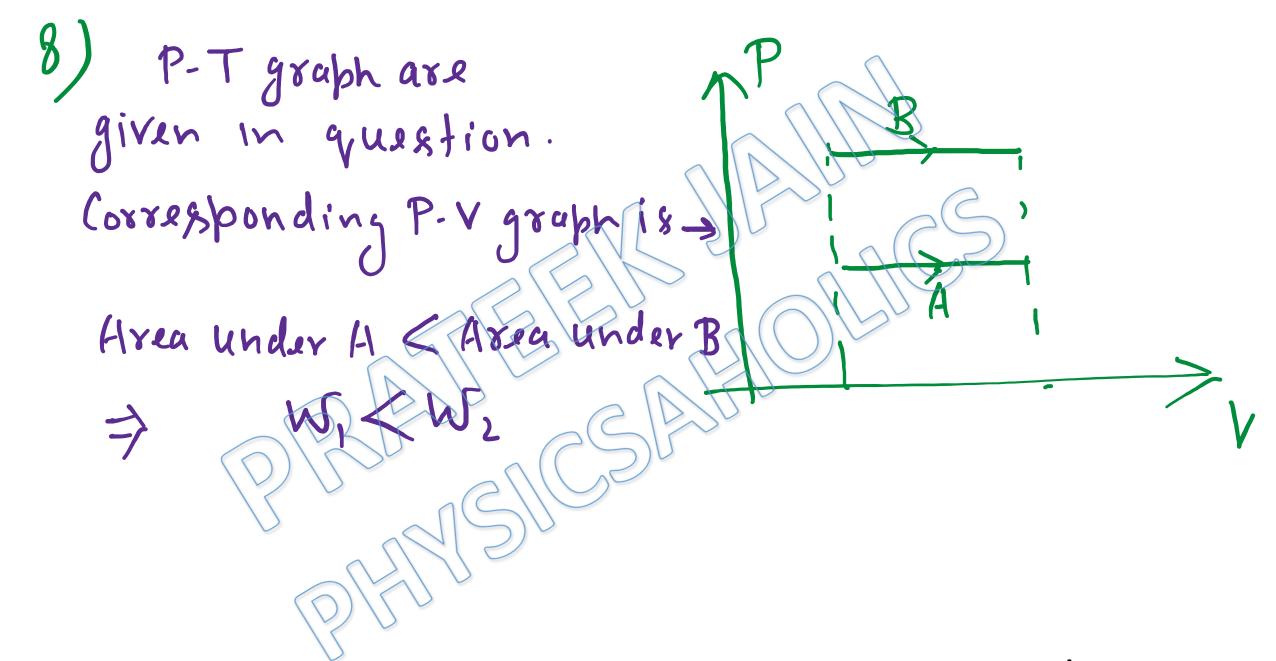
Wgas = $\int PdV = \int_{1}^{1} RRV dV$

= $\frac{NRK}{2} \left(V_1^2 - V_1^2 \right) = \frac{NR}{2} \left(KV_1' - KV_1'' \right)$

= $\frac{NR}{2} \left(T_2 - T_1 \right) = \frac{NR}{2} \left(4T_0 - T_0 \right)$

= $\frac{3}{2} HRT_0$


AINS(C)


Wgas =-Asea of Shaded region ANS(A)

6)
$$V \propto T^{2/3} \Rightarrow V = C T^{2/3} \Rightarrow V = C \frac{PV}{hR}$$
?

$$\Rightarrow V^{3/2} = C_1 PV \Rightarrow PV^{3/2} = Constant$$

$$W_{gas} = \frac{-hR \Delta T}{s} = \frac{F_{guation}}{s} = \frac{P_{guation}}{s} = \frac{$$

n=1 mole. (isochoric process) $M_{BC} = NRT_2 l_n \left(\frac{V_2}{V_1} \right)$ Constant Constant = 180 busic process

Ans(c)

 $W_1 = P_0(2Y_0 - Y_0)$ > 9x0buric ANS(A)

= + flora of loop ANS(B) 12) $\frac{P}{V} = Constant \Rightarrow PV^{-1} = Constant$ fins(c)

In BC, P= Constant =) V = (onstant Constant Incolas => Pc Vc > Pa Va = nr Taln Vi V. -> Isothermal - 9 yorhoric ANS (a,b,d)

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/60

Video Solution on YouTube:-

https://youtu.be/HYH9ur1SZhI

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/78

@Physicsaholics

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

CUSIS NIKIS